Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening

نویسندگان

چکیده

Similarity-based virtual screening is a fundamental tool in the early drug discovery process and relies heavily on molecular fingerprints. We propose novel strategy of generating domain-specific fingerprints by training neural networks target-specific bioactivity datasets using activation as new representation. The network expected to combine information already known bioactive compounds with unique structure doing so enrich fingerprint. evaluate this large kinase-specific dataset. A comparison five architectures their well-established extended-connectivity fingerprint (ECFP) an autoencoder shows that our produces better results similarity search. Most importantly, performs well even when specific targets are not included during training. Surprisingly, while Graph Neural Networks (GNNs) thought offer advantageous alternative, best performing were based traditional fully connected layers ECFP4 input. freely available at: https://github.com/kochgroup/kinase_nnfp.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarity-based virtual screening using 2D fingerprints.

This paper summarizes recent work at the University of Sheffield on virtual screening methods that use 2D fingerprint measures of structural similarity. A detailed comparison of a large number of similarity coefficients demonstrates that the well-known Tanimoto coefficient remains the method of choice for the computation of fingerprint-based similarity, despite possessing some inherent biases r...

متن کامل

Open-source platform to benchmark fingerprints for ligand-based virtual screening

: Similarity-search methods using molecular fingerprints are an important tool for ligand-based virtual screening. A huge variety of fingerprints exist and their performance, usually assessed in retrospective benchmarking studies using data sets with known actives and known or assumed inactives, depends largely on the validation data sets used and the similarity measure used. Comparing new meth...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Structural Protein–Ligand Interaction Fingerprints (SPLIF) for Structure-Based Virtual Screening: Method and Benchmark Study

Accurate and affordable assessment of ligand-protein affinity for structure-based virtual screening (SB-VS) is a standing challenge. Hence, empirical postdocking filters making use of various types of structure-activity information may prove useful. Here, we introduce one such filter based upon three-dimensional structural protein-ligand interaction fingerprints (SPLIF). SPLIF permits quantitat...

متن کامل

Ligand-based Virtual screening using Fuzzy Correlation Coefficient

Selection and identification of a subset of compounds from libraries or databases, which are likely to possess a desired biological activity is the main target of ligand-based virtual screening approaches. The main challenge of such approaches is achieving of high recall of active molecules. In this paper we presented fuzzy correlation coefficients (FCC), which is used as a similarity coefficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Chemical Information and Modeling

سال: 2021

ISSN: ['1549-960X', '1549-9596']

DOI: https://doi.org/10.1021/acs.jcim.0c01208